Занятия 2-го полугодия по экспериментальной физике в 8-м классе Олимпиадной школы МФТИ (преподаватель к.ф.-м.н., доцент *А. Лукьянов*)

Занятия 4-й и 5-й недель (17-я и 18-я недели учебного года)

ЛАБОРАТОРНАЯ РАБОТА. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ВОДЫ

Цель рботы: Изучение процессов нагрева и закипания жидкости. Измерение температуры в ходе процесса. Изучение уравнения теплового баланса. Расчет погрешностей измерений. **Оборудование**: Электрочайник, термометр измеряющий температуру в диапазоне от 0° С до 100° С, мерная кружка объемом 1 л, вода из водопровода.

Задание: Экспериментально определить удельную теплоемкость воды (воспроизвести табличное значение $c = c_{\rm уд. \ воды} = 4200\ {\rm Дж/(кг\ K)}$). Обсудить возможное расхождение полученного в опыте значения с известным из литературы. Сделать оценку погрешности измерений. Убедиться, что после закипания температура воды перестает расти выше $100^{\circ}{\rm C}$.

Решение: Для определения удельной теплоемкости нужно определить время τ нагревания известной массы воды m от температуры t_1 до t_2 в чайнике с известной мощностью P (указанной на чайнике). Далее нужно воспользоваться уравнением теплового баланса

$$P\tau = cm(t_2 - t_1) + C_u(t_2 - t_1), \tag{1}$$

где C_y – **неизвестная** теплоемкость чайника.

Затруднение: в **одном** уравнении (1) — **два неизвестных** (c, удельная теплоемкость воды, и C_v , теплоемкость чайника).

Экспериментально эту трудность можно обойти следующим образом: *провести два опыта* — например, для *разных* масс воды (m_1 и m_2) с *разными* начальной и конечной температурами (чтобы были два *различных* приращения температуры Δt_1 и Δt_2). При этом в экспериментах получатся и два *разных* времени нагрева (τ_1 и τ_2). Таким образом, получаются два уравнения с двумя неизвестными:

$$P\tau_1 = m_1 \cdot c \cdot \Delta t_1 + C_y \cdot \Delta t_1, \tag{2a}$$

$$P\tau_2 = m_2 \cdot c \cdot \Delta t_2 + C_{_{q}} \cdot \Delta t_2. \tag{26}$$

Массы воды лучше брать сильно отличающимися друг от друга, либо брать в двух экспериментах сильно различающиеся начальные температуры воды.

Вывести расчетные формулы

$$c = \frac{P\left(\frac{\tau_2}{\Delta t_2} - \frac{\tau_1}{\Delta t_1}\right)}{m_2 - m_1} \tag{3}$$

$$C_{q} = \frac{P\left(\frac{\tau_{1}}{m_{1} \cdot \Delta t_{1}} - \frac{\tau_{2}}{m_{2} \cdot \Delta t_{2}}\right)}{\frac{1}{m_{1}} - \frac{1}{m_{1}}}.$$
 (4)

Вопросы для обсуждения.

- **1.** Указать причины, по которым найденное в эксперименте значение удельной теплоемкости воды не совпадает с табличным значением ($c_{\text{уд. воды}} = 4200 \text{ Дж/(кг K)}$).
- **2.** На дне электрочайника можно найти интервал возможных значений его мощности. С чем может быть связан этот разброс?

- **3.** Произвести оценку погрешности измерений с учетом различных источников ошибок. Какова суммарная относительная погрешность измерения?
- **4.** Согласуется ли с учетом погрешностей найденное в эксперименте значение $c_{\text{уд.воды}}$ с табличным?
- 5. Существенно ли влияет на ответ учет конечной теплоемкости чайника? Сравнить теплоемкость чайника с теплоемкостью бывших у Вас в опытах теплоемкостях масс воды.
- **6.** Предположим, что Вы забыли учесть в уравнении теплового баланса конечную теплоемкость чайника. Какими бы получились два значения $c_{\text{уд. воды}}$ в двух Ваших опытах?
- **7.** Учитывая большой разброс в данных о мощности электрочайника, обратить задачу: по известной удельной теплоемкости воды найти мощность чайника.

Задачи для закрепления материала

- 1. Двухлитровый алюминиевый чайник налили доверху водой при температуре t=20 °C и поставили на электроплитку с КПД = 30 %. Мощность плитки N=5 кВт, масса чайника M=500 г. Через какое время масса воды в чайнике уменьшится на $\Delta m=100$ г? Ответ: 6 мин 23 с
- **2.** Для нахождения удельной теплоемкости воды определяли время, необходимое на образование льда в комнатном холодильнике. В одном из опытов получили, что для охлаждения воды, взятой при температуре $t_1 = 4^{\circ}$ С, до температуры 0° С потребовалось $\tau_1 = 5$ мин. Еще $\tau_2 = 107,5$ мин потребовалось для превращения охлажденной воды в лед с температурой $t_2 = -12^{\circ}$ С. Считая теплоотвод холодильника постоянным, найти удельную теплоемкость воды. **Ответ:** 4180 Дж/(кг К)
- **3.** Два одинаковых сосуда содержат воду: один $m_1 = 0.1$ кг при $t_1 = 45$ °C, другой $m_2 = 0.5$ кг при $t_1 = 24$ °C. В сосуды бросают одинаковые куски **не**известного металла с **не**известной же начальной температурой. После установления теплового равновесия в обоих сосудах температура оказалась одинаковой и равной t = 17 °C. Найти теплоемкость C_0 сосудов. **Ответ**: 140 Дж/К.